

A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants

C.S. Piper

Other Related Books

	Title	Author
	A Manual on Conservation of Soil and Water	USDA
	Agriculture Chemical Users Manual	Geoff Cowles
•	Agrochemicals in Plant Disease Management	N.G. Ravichandran
	Chemistry of the Soil 2nd Ed	F.E. Bear
•	Crop Production in Salt Affected Soils	I.C. Gupta
•	Fundamentals of Organic Farming and Gardening: An Instructors Guide	A. McGregor
	Fundamentals of Soil Science	A. Rathinasamy
•	Genesis and Management of Sodic (Alkali) Soils	S.K. Gupta
	Management of Saline & Waste Water in Agriculture	S.K. Gupta
	Principles in the Quantitative Analysis of Water Fertilizers Plants and Soils	U.S.S. Ramulu
•	Research Methods in Plant Sciences: Allelopathy (Vol. 1)	S.S. Narwal
۰	Resource Conserving Techniques in Crop Production	A.R. Sharma
	Saline Wastelands Environment and Plant Growth	B.K. Garg
•	Salinity Tolerance in Plants: Methods, Mechanisms and Management	B.K. Garg
	Salt Affected Soils: Reclamation and Management	S.K. Gupta
•	Sanrakshit Kheti Ke Antargat Satat Fasal Prabhandhan	K.V.R. Rao
•	Soil and Plant Analysis	C.S. Piper
•	Soil and Plant Analysis Laboratory Manual 2nd Ed	John Ryan
	Soil and Water Conservation in Semi-Arid Areas	FAO
•	Soil Chemical Analysis	M.L. Jackson
•	Soil Conservation 3rd Ed	N. Hudson
٠	Soil Conservation Technical Handbook	D.H. Hicks
	Soil Dynamics in Tillage and Traction	W.R. Gill
	Soil Salinity Assessment	FAO
٠	Soil Survey Laboratory Methods Manual	USDA
	Soil Survey Manual New Revised Ed	USDA
	Soil-Water Engineering Field and Laboratory Manual	T.J. Trout
•	Standard Methods for Analysis of Soil Plant and Water	I.C. Gupta

SOIL AND PLANT ANALYSIS

A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants

C. S. PIPER D.Sc.

SENIOR CHEMIST WAITE AGRICULTURAL RESEARCH INSTITUTE UNIVERSITY OF ADELAIDE

Published by: Scientific Publishers 5A, New Pali Road, P.O. Box 91 Jodhpur 342 001, India E-mail: info@scientificpub.com Website: www.scientificpub.com

Print: 2019

All Rights Reserved. No part of this publication may be reproduced or distributed in any form or by any means without the prior written permission of the publishers.

Disclaimer: Whereas every effort has been made to avoid errors and omissions, this publication is being sold on the understanding that neither the editors (or authors of chapters in edited volumes) nor the publishers nor the printers would be liable in any manner to any person either for an error or for an omission in this publication, or for any action to be taken on the basis of this work. Any inadvertent discrepancy noted may be brought to the attention of the publishers, for rectifying it in future editions, if published.

ISBN: 978-81-72336-20-2 (Hardbound) ISBN: 978-93-86237-53-8 (E-book)

Second Indian Reprint for Asia, 2017 First Indian Reprint for Asia, 2011

Original Edition 1942

All Rights Reserved under International Copyright Conventions

Printed in India

PREFACE

In 1928, in order to secure greater co-ordination between the various laboratories in Australia engaged in advisory or systematic work on soils, the methods then in use at the Waite Institute were published by Professor J. A. Prescott and the present author (Methods for the Examination of Soils, C.S.I.R. Pamphlet No. 8). The methods which were given in that publication were those selected as the result of critical studies, carried out on Australian soils in the chemical laboratories of the Waite Agricultural Research Institute and tentatively adopted for use. They were published to serve as a basis for discussion, so that some measure of standardization of the methods in use in the various Australian laboratories could be reached.

Since that publication the present author has had many valuable discussions with chemists working throughout Australia and New Zealand, as well as in other parts of the world. Much additional experience in the chemical and physical examination of soils and the chemical analysis of plant material has also been gained by his colleagues in the Department of Agricultural Chemistry of the University of Adelaide and the Division of Soils of the Council for Scientific and Industrial Research. This additional experience has led to many amendments in the original methods, to make them applicable, generally, to the wider range of soils encountered, while new methods have been added, for determinations not previously included. As a result of the favourable reception accorded to the earlier publication, and in response to numerous requests, it has been felt desirable to compile a new edition of the methods in use, incorporating the additional material available. With the exception of two or three of the less common determinations, all of the methods included in the present publication are in actual use in the laboratories of the Waite Institute and can be recommended to give accurate and reliable values for a wide range of samples.

The experience gained in handling numerous soil samples, which have been collected from all parts of Australia by the C.S.I.R. Division of Soils, has been particularly valuable, since it has necessitated the adoption of methods which will give dependable values when applied to these widely varying soil types. Methods originally developed for a single soil type have often been found to be inapplicable, without suitable modification, to the wide range of soils encountered in Australia.

The science of pedology is rapidly growing. Methods for the examination of soils, at present in use, will change as the store of our knowledge increases. New methods will continue to be developed to enable the measurement, in the laboratory, of those soil properties, which will give a more accurate description and definition of each soil type, while older methods will be improved as developments take place in other branches of pure science.

The author wishes to express his appreciation to all his colleagues in the laboratories of the Waite Agricultural Research Institute for the many valuable discussions which he has had with them and for the assistance which they have so generously given. The compilation of the present edition of the methods in use in these laboratories would not have been possible without this whole-hearted co-operation. It has been impracticable to give personal reference in the text to many of the small modifications introduced into methods, since these have frequently been adopted as the result of discussions among several different workers on a problem, but as far as possible acknowledgement has been made. The author desires particularly to express his indebtedness to Professor J. A. Prescott, Director of the Waite Institute, for the active interest which he has maintained in this work and the encouragement and advice which he has so freely given throughout the whole time that it has been the author's privilege to work with him.

C.S.P.

Adelaide,

December, 1942.

CONTENTS

CHAP	TER						PAGE
INT	RODUCTION	-	-				x
		PAR	T 1				_
	METHODO DO DOD						
	METHODS FOR						
1	THE COLLECTION	N'AND	PRE	PARATIO	N OF	SOIL	
	SAMPLES	-	-	-	-		1-6
	Field Methods	-	-	-	-	2	1
	Method for Taking	Compo	site Sa	mples	-	-	2
	Method for the (Collection	n of	Type Sam	ples in	Soil	
	Surveys	-		·.	-	-	2
	Preparation of the S	oil Samp	ple in	the Laborat	ory	-	4
11	HYDROGEN ION	CONC	ENTR	ATION,	COND	UC-	
	TIVITY ANI) WAT.	ER SC	DLUBLE S	SALTS	7	7-46
	Preparation of the			-	-	-	7
	Hydrogen Ion Con-				-		8
	Soil Reaction: Q	uinhydre	one M	ethod	-	-	.15
	Soil Reaction: G				-	+	19
	Soil Reaction: De	etermina	tion at	Field Mo	isture C	apa-	
	city -		. :			\sim	26
	Soil Reaction: Ku	ihn's Co.	lorime	tric Metho	d -	8	28
	Soil Reaction: W		titute	Hydrionm	eter	-	29
	Water Soluble Salts:				*	-	30
	The Determination	on of W	ecinc	Conductivi	ty -	-	32
	Chlorides: -	on or w	ater 50	luble Salts	-	-	36
	Electrometric Ti	tration N	Matha		-	-	39
	Chromate Titrati	on Meth	vietnot		-	-	40 45
III	MECHANICAL ANA		iou	-	-	-	
111	Pipette Method	11 1 919	-	-	-	- 4	17-79
	Beaker Method	•	-	-	-	-	59
	Hydrometer Method	4 _	-	•	7	-	75
IV	SINGLE VALUE SOI		CTLVX	Te	-	- 0.0	77
	Water Holding Cap		SIAN	15 -	-	80	-111
	Moisture Equivalent	acity	-		-	-	82
	Field Capacity		-	-	-		85
	Permanent Wilting	Point		-	-	-	91 92
	Sticky Point -	-	2		ē	-	97
	Heat of Wetting	-	_	-	5 1	-	100
	Depression in the Fr	eezine I	Point	-	-	-	105
\mathbf{v}	SOIL COLOUR	-	-		73	112	
	Method for the Det	erminati	on of	Soil Colour		112	-116
VI	STANDARD SOLUTI	ONS AT	ND IN	DICATO	DC.	117	115
	Standard Solutions	- A	וו עדי	DICATO	K2	117	-127
	Indicators -	-	-	-	-	-	117
			-	-	-	**	1 2 0

CHAP	FER						PAGE.
VII	CALCIUM CARBO	NATE	-	2	_	128-	-136
	Hutchinson and M	IacLennar	's Meth	od	-	-	130
	Modified Passon's		-	-	-		132
	Rapid Titration I		-2	-	-	-	135
VIII	THE ANALYSIS C		HYDR	OCHLO	RIC AC	ID	
	EXTRACT	-	-	-			-153
	Preparation of the	Extract:	Hall's N	Method	_	_	139
	Preparation of the				_	_	140
	Ferric Oxide and	Titaniun	Dioxio	de -	-	_	140
	Manganese Oxide	-	_		-	2	143
	Iron, Aluminium,	Calcium,	and Ma	gnesium	-	_	145
	Potash and Phosph			-	-	-	149
IX	EXCHANGEABLE			XCHAN	GE CAI	PA-	
	CITY	-	-	.	-		-196
	Cation Exchange:	-		-		-	154
	Preparation of	the Soil E	xtract	-	-	_	168
	The Analysis of			Chloride	Extract	_	172
	The Analysis of					-	183
	The Analysis of					-	184
	The Determin	nation of	Excha	angeable	Hydrog	en:	
	Metanitrophe	enol Meth	nod	-	-	-	185
	The Determina	tion of T	otal Ca	tion Exc.	hange Ca	pa-	
	city -	•	-	-	-	-	187
	The Determin	ation of	Total	Exchange	eable Me	etal	
	Cations	-	-	-	-	-	189
	The Approxima		nination	of Tota	l Exchan	ge-	
	able Metal C	Cations	-	-	-	-	189
	Anion Exchange:	-	- ,	-	-	-	190
	Total Anion E		Capacity	: Phospl	nate Adso	rp-	
	tion Method		-	-	-	-	192
	Exchangeable P	hosphate	-	-	-	-	195
X	NITROGEN	-	-	-		197	-201
	Determination	-	-	-	-	-	200
XI	NITRATES, NITR	ITES, AN	D AMN	MONIA	-	202	-212
	The Determination	n of Nitr	ate-Nitr	ogen	-	-	206
	The Determination				-	-	208
XII	ORGANIC MATT		-	-	-	213	-229
	Organic Carbon:	Dry Coml	bustion 1	Method	-	-	216
	Organic Carbon:				id Titrat	ion	
	Method	- ′	-	- '	_	_	223
	Humic Acid: Ede	n's Metho	od -	-		-	227
XIII	FREE FERRIC OX	IDE	_	_	_ *	230	-238
	Drosdoff and Tru		od	-	2	-	233
	Truog's Sodium S	Sulphide	Method	-	-	-	234

CONTENTS

СНАРТ	ER							PAGE
XIV	THE SEPARA	TION .	AND A	NAL	YSIS O	F THE	CLAY	
221	FRACT		-	_	-			-250
	The Separat		he Clas	Frac	tion: So	dium Ch		
	Method		-	- 1100		-	-	241
	The Separati		ha Clare	Fract	ion · Pn	ri's Ammo	mium	2
	Carbon:			Traci	ion. i u	115 Amme	midin	243
	The Determ			. I	d A	i	70 7 5	244
	I ne Determ	ination	or Sinca	i, iroi	n and A	iuiiiiia	-	244
			PART	r 11				
MET	HODS FOR TH	IF DE			ION O	FTHEI	NORG	NIC
MEI	CO	ONSTI:	TUENT	S OF	PLAN	TS	ong.	
Ī	THE COLLEC	TION	AND P	REPA	RATIO	N OF PL	ANT	
•	SAMPI		-	-	-			-257
II	METHODS		THE	ICL	HING	OF PL	ANT	
11	MATE		1 (1).	ASI	IING	Or 11		3-275
		KIAL	-	-	-	-	230	263
	Dry Ashing		,		· ·	., -	-	1.77
	Ashing with						-	266
	Ashing with						-	267
	Ashing with		dition o	of Ma	gnesium	Acetate	-	268
	Ashing with		-	-	-	-	-	268
	Ashing with						-	269
	Wet Digestic	on with	Sulphur	ic and	l Nitric	Acids -	-	271
	Wet Digest	on wit	h Sulph	uric,	Nitric,	and Pero	hloric	
	Acids		-	-	-		-	272
	Micro-Diges	tion wi	th Sulpl	huric,	Nitric,	and Pero	hloric	
	Acids		•	-	-		-	274
III	THE DETER	MINAT	ION O	FTF	IE MO	RE COM	MON	
			CONS					5-301
	Silica	_			_	-	-	276
	Calcium and	Magn	esium	_	_		-	276
	Potassium	i iviagii	Coltin		- 2		_	284
	Sodium	E	1821 1823 - 11	2	4 1	_	-	288
	Phosphorus	5	254	- 5			-	291
	Chlorine	-	-	- 5 4		-	-	296
		-	-					299
	Sulphur	-	-	-		mn . or	TT P	2,,
IV	THE DETER		TION	OF	THE	TRACE	ELE-	
	MENT	rs	-	•	-			2-362
	Boron	•		77	-	-	-	313
	Cobalt	-	-	-	-	-	-	317
	Copper	-	-	-	-		-	327
	Iron	-	-	-	-	-	-	338
	Manganese	-	-	-	-	-	-	343
	Molybdenur	n	-	-	-			348
	Zinc	-	-	-	-	-	_	350
Sul	ject Index: Soil	Analys	is -	_	-	-		363
	ine Inday Dia				-	_	_	367

LIST OF ILLUSTRATIONS

			Page
Fig.	1	The quinhydrone electrode assembly	17
Fig.	2	The glass electrode assembly	22
Fig.	3	The arrangement of the apparatus for the determination of the conductivity of soil suspensions	33
Fig.	4	Pipette type and dip type conductivity cells	34
Fig.	5	Filtration of a soil suspension by means of a filter candle	37
Fig.	6	R. J. Best's assembly for the electrometric determination of chlorides	42
Fig.	7	Some typical mechanical composition or summation curves of soils	51
Fig.	8	A comparison of the fractions in the International, former British, and former American methods of mechanical analysis	53
Fig.	9	Triangular diagram, showing the various soil texture classes [After J. A. Prescott, J. K. Taylor and T. J. Marshall (4)]	54
Fig.	10	A constant suction device for taking the pipette samples in mechanical analysis	63
Fig.	11	Apparatus for the determination of carbonates by Hutchinson and MacLennan's method	131
Fig.	12	Modified Passon's apparatus for the determination of carbonates	133
Fig.	13	Automatic measuring apparatus for sulphuric acid and sodium hydroxide	199
Fig.	14	Combustion train for the determination of organic carbon	218
Fig.	15	Details of the filling used in the combustion tube	218
Fig.	16	An automatic burette, with self-adjusting zero, arranged for the preservation of ferrous sulphate solution in	
т.		an atmosphere of hydrogen	225
Fig.		Pyrex glass still for the redistillation of water -	304
Fig.	18	Pipette arranged for withdrawing the amyl alcohol layer in the determination of copper -	336
Fig.	. 19	Polarizing vessel and gas train used in the polarographic determination of zinc. [After A. Walkley (11)]	356