
Plant Molecular Genetics

Supriyo Chakraborty

PLANT MOLECULAR GENETICS

SUPRIYO CHAKRABORTY Ph.D.

Department of Biotechnology Assam University (A Central University) Silchar-788 011, Assam (India)

Published by:

Scientific Publishers (India) 5 A, New Pali Road, P.O. Box 91 Jodhpur - 342 001 (India)

E-mail: info@scientificpub.com Website: www.scientificpub.com Branch Office Scientific Publishers (India) 4806/24, Ansari Road, Daryaganj New Delhi - 110 002 (India)

Print: 2018

All rights reserved. No part of this publication or the information contained herein may be reproduced, adapted, abridged, translated, stored in a retrieval system, computer system, photographic or other systems or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the editors.

Disclaimer: Whereas every effort has been made to avoid errors and omissions, this publication is being sold on the understanding that neither the editors (or authors of chapters in edited volumes) nor the publishers nor the printers would be liable in any manner to any person either for an error or for an omission in this publication, or for any action to be taken on the basis of this work. Any inadvertent discrepancy noted may be brought to the attention of the publishers, for rectifying it in future editions, if published

ISBN: 978-81-7233-396-6 eISBN : 978-93-8623-782-8 © Dr. Supriyo Chakraborty, 2005

Laser typeset: Rajesh Ojha Printed in India

Dedicated to my school teachers

Mr. Manoj Kumar Adhikari and Mr. Ramakanta Dey

FOREWORD

The knowledge of plant molecular genetics is basic to genetic modification of plants for meeting diverse human needs. The ultimate goal of this subject is to explain various hereditary mechanisms and patterns of variation in plants at DNA level. From 1953 when the double helix model of DNA was discovered, progress in plant molecular genetics has been phenomenal. The spectacular growth of plant genetics over the last few decades has in turn made possible transfer of genes across plant species even with sexual barriers.

Indiscriminate use of pesticides in crop fields pollutes our environment and poses a great threat to human and animal health. Rapid replacement of numerous locally adapted primitive varieties of crops with one or two high yielding strains in large areas not only narrows down genetic diversity but also results in the spread of serious diseases capable of wiping out entire crops. Plant molecular genetics has now come-up with several sophisticated methods of tailoring plant genome. Using these methods, plants have been developed having resistance to various biotic (insects, diseases, nematodes etc.) and abiotic stresses (heat, cold, drought, flood etc.) and having improved photosynthetic ability. Plants resistant to herbicide have been produced in potato, tomato and Brassica napus using the tools of plant molecular genetics to combat weed menace in commercial cultivation. Genes for seed storage proteins from both cereals and legumes have been successfully transferred and expressed in tobacco endosperm. The base sequence of rice genome has already been worked out. These are just a few examples of the invaluable contributions of plant molecular genetics to mankind. It is easy to comprehend that

the market price of a single gene could be in billion dollars should the gene in question confer resistance to a particular disease or insect-pest and should it avert a crop failure in a continent or a country. In the coming years, we should increasingly strengthen the teaching of plant molecular genetics in our universities and allocate more funds for research on various aspects of plant genetics. This is the clarion call of the present time to reduce the widening gap in harnessing genetic manipulation techniques between our country as a developing nation and other developed nations in the world. This book "Plant Molecular Genetics" is hence a timely contribution to generate more human resource skilled in plant genetic manipulations in our country.

I congratulate Dr. Supriyo Chakraborty for this endeavour and I express my sincere thanks to him for the trouble he has taken to compile valuable information on various topics of plant molecular genetics and to present them in a readable manner. I hope, it will be of great help to the students and the research workers alike.

Dr. P K. Borua

Professor Dept. of Life Sciences Dibrugarh University, Dibrugarh - 786 004 Assam, India

PREFACE

Genetics is the study of heredity and variation. The science of genetics was born in the spring of 1865 to an Austrian monk Gregor Johann Mendel only to be immediately driven to the bookshelf for storage for the next 35 years. It was rediscovered in 1900 by three independent workers named Carl Correns, Hugo de Vries and Erich von Tschermak. Since then genetics has made very rapid stride with time at a pace possibly unmatched even by the fast growing science of electronics and space science. The beginning of the 21st century has been marked by the spectacular and unimaginable achievements in genetics. Knowledge of genetics is basic to progress in agriculture, biology and medicine. Since 1953 when the double helix structure of DNA molecule was discovered, progress in plant molecular genetics has been phenomenal. Plant molecular genetics directly deals with the study of DNA for understanding the hereditary mechanisms in plants. Advances in plant molecular genetics have in turn made possible the transfer of useful genes across sexual barriers. It has also paved the way for developing sophisticated methods of genetic engineering for gene transfer.

Global population has been increasing at an alarming rate. In the continents of Asia, Africa and South America the population growth rate is enormously high and most of the countries belonging to these three continents are characterized by developing economy. Nearly 800 million people of the world do not get sufficient food to eat and about 1.3 billion people spend just less than a dollar a day per capita to support life. Amongst the world's poverty stricken people, nearly 50 per cent live in Asia, 25 per cent in Africa and 12 per cent in South America. In order to feed the teeming millions, the global food production has to be increased by utilizing the available resources.

Of the world's available land area (14 billion ha), only around 3.2 billion hectares is arable with minimal environmental modification. Out of the total arable land, approximately 25 per cent is subject to excess salinity and another 25 per cent subject to soil acidity and are not suitable for agricultural production. On the other hand, only 14 per cent out of the world's 1.4 billion hectares of land currently under cultivation is irrigated and it produces nearly half of the world's food. Increasing food production further by bringing more area under cultivation is not feasible. Agricultural scientists have, therefore, been left with the only option of increasing food production by raising crop productivity *i.e.* production per unit of land. One of the ways of raising crop productivity is the development of high yielding varieties by geneticists and breeders followed by their wide cultivation.

Agricultural production throughout the world is limited by abiotic and biotic stresses. Every year agricultural production is reduced by nearly 33 per cent by biotic stresses alone which include insect-pests, pathogens, nematodes and weeds. Crop plants grown under stress environments result in poor yield since they, usually lack the inherent mechanism to grow well under stress. To address the situation of low yield, the science of plant molecular genetics is possibly the only means. Recent advances in plant molecular genetics have elucidated the genetic mechanisms conferring resistance to plants against various abiotic and biotic stresses. Its improved techniques have enabled plant geneticists and breeders to modify crop plants through artificial transfer of genes to suit the changing environment under stress and to produce high yield.

It is an enormous task to compile all the information generated till todate on plant molecular genetics in a single volume. It requires immense talent, diligence and considerable skill for handling varied subjects of plant molecular genetics like an expert. I do not even dare to tread the path of that enormous task of compilation. Rather I have chosen some specific topics of plant molecular genetics that are directly related to food production for this textbook and tried to compile as much basic information as possible for students and the researchers. This textbook contains several important topics like gene cloning in plants for resistance to insects, viruses and herbicides. It also includes chapters like photosynthetic genes, defense response genes, heat-shock protein genes, molecular genetics of cold tolerance and apomixis in crop genetic improvement.

Plant molecular genetics is now taught \mathbf{at} both undergraduate and postgraduate courses of biological science in traditional and agricultural universities of India and other SAARC countries. The teachers and the students have to refer various books and periodicals to collect the basic information on different topics of plant molecular genetics since there is no textbook covering the major topics in a comprehensible manner. I have written the present textbook to satisfy the needs of the students and the teachers. In my opinion as an author (perhaps my opinion may differ from others), no textbook can claim originality either in contents or in presentation. The present textbook too is not an exception and it draws information from several research papers by renowned workers, books and articles. I have tried to use a simple language for presenting the contents step by step for easy understanding of a beginner on the subject. At the end of each chapter a list of references have been given.

I can only hope that the students will find this book very useful taking their course examinations for obtaining degrees and for appearing in competitive examinations like civil services, NET, ARS etc. for placement. I take this opportunity to welcome suggestions from teachers and students to make the book more useful in subsequent editions.

Many of my colleagues have encouraged me to develop this text for the benefit of the students. I am grateful to all of them: particularly to Dr. B.K. Borah, Dr. B. Guha and Dr. P. C. Sarmah of Assam Agricultural University. I express my sincere gratitude to my parents, parents-in-laws, sibs, sibs-in laws, my friends and well wishers who helped me build up confidence for writing this textbook. I am grateful to Mr. Bijoy Paul and the publishers for their untiring efforts to present my work in print before a wide section of students and research workers.

I cannot but express my sincere gratitude to my wife Sumita who has helped me get over the anxiety that goes with such work despite her busy work schedule at home and in school. I am thankful to my 3-year old son Srinjay who at times interrupted my attention calling me "papa" for placing his demand for toys and thereby indirectly reinvigorated my mind to resume my work with a renewed zeal despite his interruptions.

Dr. Supriyo Chakraborty

CONTENTS

Foreword	υ
Preface	vii
1. Meaning of some terms used in the book	1-14
2. Photosynthetic genes	15-26
Introduction	
1. Impact of light on photosynthetic genes	16
2. Light and plastid genes expression	17
3. Light and nuclear genes expression	18
4. Expression of $rbcS$ gene	19
(a) Transcriptional regulation of $rbcS$ gene	19
(b) Posttranscriptional regulation of $rbcS$ gene	21
5. Expression of chlorophyll a/b binding protein genes	21
6. Genetic regulation of cab gene	22
7. Developmental regulation of cab gene	22
8. Hormonal regulation of photosynthetic genes	22
9. Developmental regulation of photosynthetic genes	23
10. Circadian regulation of photosynthetic genes	24
References	
3. Heat-shock protein genes	27-40
Introduction	
1. Heat-shock response — An attractive system	27
2. Characteristics of heat-shock response	28

3. Types of heat-shock protein genes	29
I. High molecular weight HSPs genes	29
(a) HSP 70 family	$\frac{23}{29}$
(b) HSP 90 family	20 30
II. Low molecular weight HSP genes	31
(a) 15-18 kd family HSP	32
(b) 21-24 kd family HSP	32
(c) 26-28 kd family HSP	32
4. Biochemical function of high molecular weight HSPs	33
5. Biochemical functions of low molecular weight HSPs	34
6. Role of heat-shock protein in thermotolerance	35
7. Genetic regulation of heat-shock genes	35
8. Activation of transcription of heat-shock genes	36
9. Self-regulation of heat–shock genes	37
10. Protein regulation of heat-shock genes	37
References	
4. Defense response genes	41-55
Introduction	
1. Development of disease	42
2. Physiological races vs. pathotypes	42
3. Differential hosts	43
4. Gene-for- gene relationship	43
(a) Importance of gene-for-gene relationship	44
(b) Genetic feedback hypothesis	44
5. Resistance vs. susceptibility	45
6. Molecular genetics of virulence and avirulence	46
7. Molecular genetics of resistance	47
	11
8. Vertical resistance and horizontal resistance	47
 8. Vertical resistance and horizontal resistance 9. Activation of Defense response genes 	
	47
9. Activation of Defense response genes	47 48

Contents	xiii
10. Structure of Defense response genes	50
(a) PAL gene	50
(b) CHS gene	51
(c) CHI gene	51
(d) 4CL genes	51
(e) HRGP gene	51
(f) Hydrolase gene	52
(g) PR-protein gene	52
11. Activation of defense response genes	52
(a) Elicitors and receptors	52
(b) Signaling pathways	53
12. Future research	54
References	
5. Molecular genetics of cold tolerance	56-69
Introduction	
1. Types of cold stress	57
Symptoms of cold stress	57
2. Forms of membrane damage	58
(a) Expansion induced lysis	58
(b) Lamellar to hexagonal II-phase transition	59
3. Mechanisms of cold tolerance	59
(a) Formation of exocytotic extrusions	59
(b) Formation of osmotically active	60
plasmalemma strands (c) Biophysical properties of plasma membrane	60
(d) Role of polypeptides, isozymes, simple sugars and proline	60
4. Genetic variability of cold tolerance	61
5. Inheritance of cold tolerance	61
6. Gene expression in cold tolerance	62
(a) Changes in mRNA populations	63
(b) Changes in isozyme composition	63
(c) Changes in protein synthesis	64

7. Characteristics of cold regulated (cor) genes	65
(a) Correlation between freezing tolerance and <i>cor</i> gene expression	65
(b) Application of abscisic acid for <i>cor</i> gene expression	65
(c) Drought and <i>cor</i> gene expression	66
(d) Heat and <i>cor</i> gene expression	66
(e) Thermostability of <i>cor</i> gene products	66
(f) Location of <i>cor</i> gene products	67
References	
6. Apomixis in crop genetic improvement	70-98
Introduction	
Broad categories of apomixis	71
1. Sources of apomixis	72
2. Types of apomixis useful in crop improvement	72
(a) Apospory	73
(b) Diplospory	73
(c) Automixis	73
(d) Semigamy	73
(e) Adventive embryony	74
Recurrent apomixis	74
Non-recurrent apomixis	74
Androgamy	75
3. Genetics of apomixis	75
4. Role of environment on apomixis	76
5. Nature of apomictic progeny	77
6. Identification of apomicts	79
(a) Progeny test	79
(b) Cytological studies	80
(c) Molecular marker analysis	80
7. Utility of F_1 hybrids	81
8. Application of apomixis	82
(a) Fixation of heterosis	82
(b) Production of dihaploids	83

Contents	xv
(c) Production of Vybrids	84
9. Advantages of apomixis in breeding program	85
10. Problems in breeding apomictic plants	88
11. Breeding methods of apomictic crops	90
(a) Dominant gene controlling apomixis	91
(b) Recessive gene controlling apomixis	91
(c) Population breeding method	92
12. Expression of apomictic gene	92
13. Induction of apomixis by mutagens	93
14. Incorporation of apomixis in sexual crops by hybridization	94
15. Future prospects of apomixis breeding	94
References	
7. Gene cloning for insect resistance in crops	99-127
Introduction	
Advantages of insect resistant crops	101
1. Causes of insect pests outbreaks	102
(a) Absence of inherent resistance	102
(b) Monoculture	103
(c) Storage	103
(d) Agrochemicals	103
2. Insect biotypes	104
(a) Development of insect biotypes	104
(b) Identification of biotypes	105
3. Retrospects of insect host-plant interactions	106
4. Role of hostplant resistance in insect management	107
5. Classification of resistance of host-plant	108
(a) Nonpreference	108
(b) Antibiosis	108
(c) Tolerance	108
6. Defensive mechanisms of plants against insects	108
(a) Escape	109
(b) Physical defense	109
(c) Chemical defense	110

	7. Classification of insecticidal compounds of plants	111
	(a) Alkaloids	111
	(b) Terpenoids	111
	(c) Steroids	112
	(d) Flavanoids	112
	(e) Non-protein amino acids	112
	(f) Protease inhibitors	112
	(g) Lectins	114
	(h) Thiol protease inhibitors	115
	(i) α-amylase inhibitors	115
	8. Bacterial toxins as insecticides	116
	(a) Advantages of Bt-toxin	117
	(b) Disadvantages of Bt-toxins	117
	9. Types of genetic resistance to insects	117
	10. Production of insect resistant transgenic plants	119
	(a) Transgenic plants expressing cowpea protease inhibitors	119
	(b) Transgenic plants expressing Bt-toxins	121
	(c) Transgenic plants expressing thiol protease inhibitors	123
	(d) Transgenic plants expressing protease inhibitor-II	124
	(e) Transgenic plants expressing α-amylase inhibitors	124
	(f) Transgenic plants expressing pea-lectins	124
	11. Pyramiding resistance genes in transgenic plants	124
	12. Transgenic plants vs. Agricultural systems	125
	References	
8. G	ene cloning for virus resistance in crops	128-150
	Introduction	
	Virus control measures	129
	1. Virus resistant crops and their increasing popularity	129
	2. Resistance vs. susceptibility to virus infection	130
	3. Biology of infection by RNA plant virus	132
	(a) Plant to plant spread of virus	132
	(b) Penetration into host	132

Contents	xvii
(c) Uncoating and early gene expression	133
(d) Virus RNA replication	133
(e) Late gene expression	135
(f) Virus assembly	135
(g) Cell to cell movement	135
4. Developing virus resistant crops	135
A. Naturally occurring virus resistance genes	136
(a) Virus resistance conferred as host hypersensitive response	136
(b) Virus resistance conferred by restricted cell to cell movement	137
(c) Virus resistance conferred by inhibition of RNA replication	138
(d) Virus resistance conferred by inhibition of polyprotein processing	138
Cloning naturally occurring virus resistance genes	139
— Cross protection phenomenon	140
— Disadvantages of cross protection	141
B. Artificial resistance genes against viruses	141
(a) Resistance conferred by virus coat protein (CP) genes	142
(b) Resistance conferred by satellite RNAs	143
(c) Resistance conferred by satellite virus	144
(d) Resistance conferred by antisense RNA	145
(e) Resistance conferred by sense RNA	146
(f) Resistance conferred by a mild virus strain	147
(g) Resistance conferred by ribozymes	147
5. Conclusions	148
References	
9. Gene cloning for herbicide resistance in crops	151-170
Introduction	
1. Breeding for herbicide resistant varieties	152
(a) Conventional breeding method	152
(b) Mutant selection through <i>in vitro</i> techniques	153
(c) Genetic engineering techniques	153

2. Approaches of genetic engineering	154
(a) Herbicide resistance through target site manipulation	154
(b) Herbicide resistance through metabolic detoxification or degradation	154
3. Target site manipulation	154
(a) Atrazine	154
(b) Glyphosate	156
(c) Glufosinate or L- phosphinothricin	158
(d) Sulphonylureas and imidazolinones	159
(e) Asulam	161
4. Metabolic detoxification or degradation of herbicide	162
(a) Glyphosate	163
(b) Bromoxynil	164
(c) Glufosinate	165
(d) 2,4-D	165
(e) Dalapon	166
(f) Cyanamide	166
5. Plant enzymes detoxifying herbicides	167
6. Advantage of metabolic detoxification over target site manipulation	168
7. Uses of herbicide resistance genes	168
8. Future prospects of herbicide resistant crops	169
References	